Марки портландцемента

Содержание

Где используют цемент марок М 800, М 1000 или М 2000?

Цементы, марки которых выше М500, относятся к высокомарочным цементам. В литературе встречал только бетоны марок М1200, М1600, М1800 и М2000. Портландцементы, также в литературе максимум встречал марок М600, М800, М900 и М1000. В основном, такие бетоны относят к гидротехническим, жаропрочным или антирадиационным.

С высокомарочными цементами в России обстоит беда. Производят их крайне мало и те, только на специальные объекты по государственному заказу. Бетоны, изготовленные на основе таких цементов, уже через 28 суток, обладают прочностью, соответствующей марке используемого цемента, морозостойкостью минимум F500, водостойкостью минимум W20. Подобные цементы химически активны. Содержат значительное количество активных добавок.

Такие бетоны используют:

  • при гидротехническом строительстве (ГЭС, ПЭС, плотины, дамбы, опоры мостов, сооружения для защиты от наводнений, водохранилища и т.д.).
  • при мостостроении (больше дорожные или несущие пролеты, сверхнапряженные конструкции).
  • туннельное строение в горной местности или на больших глубинах.
  • строение сверхпрочных сооружений военного назначения.
  • строение помещений научного и медицинского назначения — исследовательские лаборатории, рентген-кабинеты и МРТ-кабинеты и т.д.
  • при промышленном строительстве (строительство ВЭС, КЭС, ТЭЦ, ТЭС, АЭС, строительство литейных цехов, печей плавления и т.д).

С такими бетонами используется арматура сверх высоких классов (например А1000), диаметрами более 50 мм, 80 мм и даже 100 мм.

Портландцемент (ПЦ)

Портландцемент (ПЦ) – наиболее распространенная разновидность строительных цементов, производство которых регламентирует ГОСТ 31108-2016. Это гидравлическое вяжущее, изготавливаемое из карбонатных пород (известняка, мела, кремнезема, глинозема), твердеет при затворении водой. Оно широко используется для изготовления цементно-песчаных растворов, бетонов, сухих строительных смесей различного назначения, применяемых в гражданском, промышленном, военном строительстве. Ассортимент различных видов и марок портландцемента позволяет выбрать подходящее вяжущее для индивидуального домостроения, массового многоэтажного строительства, сооружения объектов промышленного и инженерного назначения.

Состав портландцемента

Портландцемент получают спеканием сырьевой смеси, в состав которой входят глина (22-25 %) и известняк (75-78 %). Добыча известняка, залегающего на глубинах до 0,7-10 м, ведется открытым способом. Для изготовления портландцемента используется слой известняка желтовато-зеленоватого цвета.

Спеченная при высоких температурах гранулированная сырьевая смесь называется «клинкер». Именно его состав и характеристики определяют важные свойства цемента: прочность цементного камня и скорость ее нарастания, долговечность и стойкость к сложным эксплуатационным условиям отвердевших растворов и смесей, изготовленных на базе портландцемента.

Особенности производства портландцемента

Известняк от места добычи доставляют к месту производства портландцемента. Сырье сушат и осуществляют его первичный помол с введением специальных добавок. Полученную смесь обжигают. Образованный клинкер повторно перемалывают с введением активных добавок. Поскольку разные виды сырьевых смесей имеют индивидуальный состав, влажность и другие характеристики, каждое производство организуется по собственной технологии. Наиболее распространенные варианты:

  • Сухой способ. Сырье во время или после первичного измельчения сушится. На обжиг материал поступает в сухом виде. Это наиболее экономичный вариант, не требующий затрат энергии на удаление лишней воды из шихты.
  • Мокрый. Используется при производстве портландцемента из сырья, в состав которого входят мел, глина, железосодержащие добавки. Сырье измельчается в воде. Суспензия после удаления лишней воды обжигается в печи. В результате обжига получают небольшие шарики, из которых после тонкого помола образуется цемент.
  • Комбинированный. Эта технология совмещает две предыдущие. Сырьевую смесь (шлам) готовят мокрым способом, после чего ее отправляют на фильтры. В результате фильтрования смесь осушается до 16-18 %. После фильтров сырье поступает на обжиг. Есть и другой вариант комбинированного способа. Шлам готовят сухим способом, добавляют в него воду, гранулируют. После обжига получают клинкер в виде гранул 10-15 мм.

Технические характеристики портландцемента

Оценка качества портландцемента осуществляется по следующим характеристикам:

  • Плотность. Эта величина определяется минералогическим составом материала. В рыхлом состоянии она находится в пределах 0,9-1,3 т/м3, в уплотненном – 1,5-2 т/м3.
  • Период схватывания. Эта техническая характеристика является важным свойством портландцемента. Она зависит от минералогического состава сырья, тонкости помола, водоцементного соотношения, температуры окружающей среды. Схватывание должно начаться не ранее чем через 45 минут, а закончиться – не позже, чем через 12 часов после затворения портландцемента. По нормативам портландцемент, предназначенный для создания бетонных покрытий дорог, может схватываться только через 2 часа после его затворения.
  • Тонкость помола. Эта величина, равная суммарной поверхности зерен в единице массы цемента, существенно влияет на технические характеристики материала, в частности, на скорость его твердения. У обычного портландцемента тонкость помола равна 2500-3000 см2/г, быстротвердеющего – 4000-6000 см2/г.
  • Равномерность изменения объема во время твердения цементной лепешки. Это одна из главных технических характеристик портландцемента. Неравномерное схватывание характерно для вяжущего, в составе которого присутствует слишком большое количество свободной извести или оксида магния. Равномерность изменения объема измеряется на четырех лепешках, которые изготавливаются из цементного теста нормальной густоты. Испытания проводят способом кипячения. Цемент считается прошедшим испытания, если на лицевой стороне всех лепешек отсутствуют: сетка мелких трещин или крупные радиальные трещины, доходящие до края.
  • Водоцементное соотношение (водопотребность). Этот термин означает количество воды, необходимое для изготовления продукта требуемой пластичности. Для портландцемента водоцементное соотношение составляет примерно 25 %. При необходимости его снижения в состав сырьевой смеси вводят пластификаторы.
  • Водоотделение. Этот процесс происходит при твердении строительного раствора или смеси из-за опускания частиц вяжущего и заполнителей под действием силы тяжести. Вода может выступать на поверхности бетонного элемента, между слоями укладываемой смеси или раствора, вокруг частиц заполнителя или арматурных стержней. Наличие таких тонких водных пленок внутри бетонного элемента значительно снижает его прочность и долговечность.
  • Морозостойкость. Это свойство характеризует способность отвердевшего цементно-песчаного слоя или бетонной конструкции, изготовленных на базе портландцемента, выдерживать циклы замерзания/оттаивания без потери рабочих характеристик.
  • Коррозионная стойкость. Ее обычно разделяют на химическую и физическую коррозионную стойкость. Химическая коррозионная стойкость зависит от минералогического состава, а именно, от способности компонентов выдерживать воздействие химически агрессивных сред. Физическую коррозионную стойкость улучшают снижением пористости бетона, уменьшением радиуса пор и их обработкой гидрорфобизирующими составами.
  • Тепловыделение. Это свойство характеризует величину тепла, выделяемого в процессе гидратации цемента. Портландцемент, слишком активно выделяющий большое количество тепла, нельзя использовать при строительстве массивных сооружений из-за большой разницы в температурах на поверхности и внутри бетонного элемента. Для регулирования тепловыделения цемента применяют специальные активные добавки.

Разновидности портландцемента

Все виды портландцемента делятся на бездобавочные и добавочные. Бездобавочные ПЦ в качестве добавок содержат только гипс. Такие цементы используются для строительства надземных, подземных, подводных конструкций, изготовления железобетонных изделий, не контактирующих при эксплуатации с агрессивными средами. Активные минеральные добавки изменяют технические характеристики портландцемента в нужном направлении. С их помощью повышают водонепроницаемость, коррозионную стойкость и другие полезные свойства готовых продуктов, изготовленных на базе цемента.

В зависимости от присутствующих в составе добавок различают следующие разновидности портландцемента:

  • Быстротвердеющий (БПЦ). Для этого цемента характерен быстрый набор прочности в первые дни после заливки смеси или раствора. В его составе преобладают трехкальциевый силикат и трехкальциевый алюминат. Он имеет очень высокую тонкость помола, поэтому быстро впитывает влагу из воздуха. При неправильном хранении такой цемент очень быстро теряет товарные характеристики. Быстротвердеющие портландцементы используются при производстве ЖБИ с высокой отпускной прочностью. Коррозионная стойкость быстротвердеющих цементов пониженная.
  • Пластифицированный. Получают введением поверхностно-активных добавок. Применение этой разновидности портландцементов позволяет снизить водоцементное соотношение, повысить прочность и морозостойкость получаемых растворов и бетонов после твердения.
  • Гидрофобный. При производстве гидрофобного портландцемента в состав клинкера добавляют гидрофобные ПАВ, которые образуют на зернах цемента водоотталкивающие пленки. Обычно в качества ПАВ востребованы продукты нефтепереработки. При хранении даже во влажных условиях такой цемент не портится, не слеживается и не комкуется. Строительные смеси и растворы на базе гидрофобного цемента отличаются хорошей пластичностью, а после твердения – водонепроницаемостью и морозостойкостью.
  • Сульфатостойкий. Цемент изготавливают из клинкера, который имеет в составе пониженное содержание трехкальциевых силиката и алюмината. Такой портландцемент повышает стойкость бетона к коррозии при эксплуатации строительной конструкции в контакте с сульфатсодержащими средами.
  • Белый. Цемент получают с использованием белых коалиновых глин, мела, чистых известняков. На основе белого ПЦ изготавливают цветные цементы путем добавления красящих пигментов.
  • Шлакопортландцемент. Изготавливают совместным помолом портландцементного клинкера, гипса и доменного гранулированного шлака.
  • Пуццолановый. Получают смешиванием портландцементного клинкера, активной миндобавки, гипса. Активные минеральные добавки, входящие в состав этого цемента, – вулканические туфы, пемзы, пеплы, трепел, золы тепловых электростанций. Это вяжущее активно используется при строительстве гидротехнических сооружений, подземных объектов.

Классы и марки прочности портландцементов

В соответствии с ГОСТом 31108-2016 основная характеристика портландцемента – прочность – определяется классом. Ранее это свойство характеризовала марка. Наиболее популярные портландцементы:

  • В 32,5 (М400). Вид цемента, востребованный практически во всех областях частного и массового строительства, для изготовления ЖБИ, устройства дорожек, площадок, отмосток.
  • В42,5 (М500). Портландцемент, имеющий прекрасные прочностные характеристики, применяется в ремонтно-строительных работах на объектах ответственного назначения, при восстановлении строительных конструкций после аварий, проведении дорожно-ремонтных работ.
  • В52,5 (М600). Портландцемент, используемый при строительстве особо ответственных объектов.

В каких случаях портландцемент не применяется?

При выборе вида цемента учитывают условия, в которых будет эксплуатироваться объект. Портландцементы с активными добавками, пуццолановые цементы не применяют в регионах с низкими температурами. Все виды портландцементов не используются:

  • в соленых водах;
  • в руслах рек проточного типа;
  • в водоемах, имеющих в составе большое количество различных минералов.

Сульфатостойкий цемент подходит для применения только в статичных водах невысокой агрессивности. Для плотин, дамб, конструкций, эксплуатируемых в проточных водах, используют специальные виды цемента.

Селективная дезинтеграторная активация портландцемента

В статье упоминается оборудование:

ТРИБОКИНЕТИКА – 3050Мельница

от 2 690 000 Р.

Оборудование относится к разделу:

Мельницы среднего и тонкого помола, воздушные классификаторы

ЧАСТЬ 2.

Методы снижения затрат энергии при помоле цемента

Рассмотренная технологическая схема помола материалов в замкнутом цикле, хотя и обеспечивает возможность активации портландцемента, себестоимость повышения его активности все равно остается достаточно высокой. Однако это единственный энергопродуктивный способ увеличить активность портландцемента методом повышения его дисперсности. Высокая стоимость подобных работ объясняется, прежде всего, тем, что тонкий помол цементного клинкера является наиболее энергоемким процессом, а увеличение дисперсности цементного порошка не возможно без серьезных затрат энергии. Именно на помол клинкера приходиться до 70 % энергозатрат при производстве цемента.

Вторая причина высокой себестоимости помола портландцемента является низкая эффективность помольного оборудования, реализующего модель разрушения методом двухстороннего нагружения (деформация сжатия). Шаровые мельницы, являясь наиболее яркими представителями помольного оборудования раздавливающе-истирающего действия, при работе с высокодисперсными материалами характеризуются низкой эффективностью, и КПД их составляет в лучшем случае несколько процентов.

Таким образом, для того чтобы кардинально уменьшить себестоимость активации портландцемента, необходимо прежде всего снизить затраты энергии на разрушение цементного зерна. При этом нужно признать, что большое уменьшение затрат энергии могут дать лишь те способы, при которых материалы имеющие прочность на сжатие большую нежели прочность на растяжение, измельчались бы под влиянием прямых разрывающих воздействий на них, а не в результате первоначальных сжимающих сил. Иными словами в работах по активации портландцемента выполняемых на местах его использования, когда объемы перерабатываемого материала относительно невелики (по меркам цементных заводов) экономически целесообразным являются метод ударного разрушения или как его еще называют дезинтеграторный метод.

Так же для снижения себестоимости активации портландцемента, помимо использования более рациональной модели разрушения цементного зерна, необходимо попытаться сократить объемы частиц, подлежащих измельчению. Соответственно, при сокращении количества объектов разрушения, затраты энергии также снижаются, а вместе с ней и уменьшается себестоимость активации.

Как уже говорилось раньше, при прочих равных условиях, чем выше дисперсность получаемого продукта, тем больше энергии необходимо затратить для ее достижения. Другими словами, чем меньше размер частицы, тем больше энергии требуется для ее разрушения, и наоборот, чем крупнее частица, тем меньше энергии требуется для ее разрушения.

В целом сам процесс тонкого помола является весьма энергоемким, и требует повышенных энергетических затрат по сравнению с более грубым измельчением. К тому же, тонкий помол подразумевает повышение интенсивности энергетического воздействия на обрабатываемый материал, что всегда сопряжено с безвозвратной потерей металла из-за износа помольных органов, который тем выше, чем тоньше частицы обрабатываемого материала (при прочих равных условиях). Тончайшие частицы материала препятствуют эффективному разрушению более крупных зерен, снижая производительность помольного оборудования и увеличивая его энергопотребление. Поэтому своевременное удаление из зоны помола частиц, достигших требуемой тонины, обеспечивает повышение эффективности измельчения. В этом случае значительно меньше частиц материала будет подвергаться безрезультатному нагружению, что обеспечивает снижение энергозатрат на трение частиц между собой и исключает их переизмельчение.

Влияние зернового состав на основные свойства цемента

Исследования показывают, что эффективность, помола цементного клинкера, оцениваемая по оптимальному гранулометрическому составу порошка и минимальному удельному расходу электроэнергии, тем выше, чем быстрее и полнее выделяются из материала наиболее тонкие фракции, затрудняющие процесс измельчения. Именно на своевременном удалении частиц требуемого размера и основана технология с использованием замкнутого цикла помола клинкера, обеспечивающая получение высокодисперсного быстротвердеющего портландцемента, удельная поверхность которого составляет 3500-4500 см2/г и выше.

Однако далеко не вся масса цементного порошка нуждается в дополнительном измельчении при его активации, поэтому разделение исходного продукта по размеру частиц является действенным способом снижения себестоимости активации. Именно поэтому работы, связанные с повышением вяжущих свойств цемента заводского изготовления, необходимо рассматривать как комплекс мероприятий, направленных на увеличение дисперсности цементного порошка за счет корректировки его гранулометрического состава.

Известно, что цементный порошок весьма неоднороден по своему гранулометрическому составу, более того степенью неоднородности во многом определяются его физико-технические свойства, в частности равномерность твердения, прочность на разных сроках твердения и т.д. Разные фракции цементного порошка оказывают влияние на прочность цемента, изменяют его водопотребность, пластичность цементного теста, и, наконец, скорость твердения. В связи с этим ряд исследователей рекомендует характеризовать активность цемента не только по удельной поверхности порошка, но и по зерновому составу. Так, А. Н. Иванов-Городов полагает, что равномерное и быстрое твердение цемента достигается при следующих зерновых составах:
зерен мельче 5 мкм — не более 20 %, зерен размерами 5-20 мкм — около 40-45 %, зерен размерами 20-40 мкм — 20-25 %, а зерен крупнее 40 мкм — 15-20 %.

Многочисленные исследования, проводившиеся как в нашей стране, так и за рубежом, позволили выявить следующую зависимость между количеством зерен определенного размера и скоростью твердения портландцемента. Так, частицы размерами 0-5 мкм оказывают решающее влияние на рост прочности цементного камня в первые часы твердения. Именно от частиц этого размера напрямую зависят сроки начального схватывания портландцемента. Частицы размером 5-10 мкм влияют на прочность цементного камня в 3-7 суточном возрасте, а фракция 10-20 мкм определяет прочность в 28 суточном и более позднем возрасте. Установлено, что, измельчая один и тот же клинкер и соответственно изменяя долю частиц размером 5-20 мкм в общей массе цементного порошка, можно получать портландцемент марок 600, 700 и 700 БТЦ (аббревиатура БТЦ расшифровывается как — быстро твердеющий цемент).

Таким образом, для повышения активности портландцемента, либо обеспечения возможности регулирования прочности бетонных изделий в разные сроки твердения, достаточно увеличить долю частиц определенного размера в общей массе цементного порошка. Увеличение процентного содержания частиц нужных размеров естественно происходит за счет дополнительного измельчения крупных цементных зерен, которые в достаточном количестве присутствуют даже в высокомарочном цементе, не говоря уже о материале среднего качества. Естественно, помол относительно крупных цементных зерен, требует меньших затрат энергии, поэтому его себестоимость, относительно помола тонких частиц, невелика.

Принципы селективного измельчения цементного зерна

Для того чтобы реализовать технологию выборочного или иначе селективного измельчения в работах по активации портландцемента, необходимо провести первичную классификацию материала, для выделения «балластной» фракции, состоящей из частиц требуемых размеров, дополнительное измельчение которых не целесообразно.

Термин «первичная» классификация вводится специально, чтобы отразить суть метода селективного измельчения. Если в производстве портландцемента используется технологическая схема замкнутого цикла измельчения, когда в процессе помола клинкера, частицы требуемого размера извлекаются уже после первичного помола, в этом случае имеет место классификация «вторичная», так как классифицирующий агрегат работает с материалом, прошедшим стадию первичного измельчения. Предлагаемый метод использования «первичной» классификации при активации портландцемента, заключается в том, что классифицирующий агрегат устанавливается перед помольной установкой, что позволяет провести первичное разделение поступающего на помол материала, а значит выделить цементные зерна нужного размера, исключив их нагружение в помольном агрегате. Частицы, прошедшие классификацию, отправляются в приемный бункер тонкого продукта, частицы не прошедшие классификацию отправляются на помол.

Таким образом «первичная» классификация портландцемента позволяет выделить из основной массы цементного порошка от 30 до 60 % частиц, дальнейшее измельчение которых не только экономически нецелесообразно, но и вредно по причине их переизмельчения ! Удаление «балластной» фракции из основной массы активируемого цемента позволяет снизить требования к размольной мощности агрегатов измельчения и использовать измельчительное оборудование, производительность которых по помолу ниже, чем общая производительности технологической линии активации портландцемента, что было совершенно не возможно при старых схемах активации.

Однако, сама по себе «первичная» классификация, хотя и позволяет в значительной степени уменьшить нагрузку на помольный агрегат, как в части снижения объемов перерабатываемого материала, так и в части требований к дисперсности получаемого продукта, это еще не сам метод селективной дезинтеграторной активации портландцемента, а только его составляющая.

В принципе для дополнительного помола выделенной фракции можно использовать помольные агрегаты различной конструкции, в том числе и мельницы барабанные шаровые и мельницы вибрационные, но эффект активации портландцемента в этом случае будет не полным, применение агрегатов измельчения ударного действия будет в любом случае предпочтительным. Причина этого заключается в том, что шаровая мельница, является помольным агрегатом, характеризуемым крайне низкой избирательностью измельчения.

Для продукта измельчаемого методом раздавливания- истирания (модель разрушения — деформация сжатия) свойственен весьма разнообразный гранулометрический состав, который представлен мелкими (переизмельченными), частицами (<5мкм), частицами основной «товарной» фракции (5-40мкм) и крупными частицами, размер которых в десятки раз превышает размер частиц «товарной» фракции. При этом процентное отношение частиц каждой фракции изменяется в зависимости от вида мельницы, применения открытого или замкнутого цикла измельчения, размера мелющих тел, а также от формы бронеплит в шаровых мельницах, соотношения между длиной и диаметром мельниц, степени заполнения камер мелющими телами и целого ряда других факторов.

В случае, когда шаровая мельница используется для активации портландцемента, независимо от гранулометрического состава исходного материала, конечный продукт будет представлен тремя основными фракциями, которые будут состоять из переизмельченных частиц, средней фракции и крупных частиц.

При увеличении интенсивности воздействия мелющих тел на обрабатываемый материал, содержание переизмельченных частиц в порошке будет достаточно быстро увеличиваться, при этом, переход крупной фракции в среднюю будет происходить более медленно. Отсюда можно сделать вывод, что при дополнительном помоле высокодисперсных порошков на шаровой мельнице, «товарная» фракция, представленная частицами среднего диапазона размеров в результате переизмельчения переходит в мелкую фракцию, содержащую тонкие частицы, в то время как процентное содержание в порошке частиц крупной фракции в процессе помола изменяется достаточно медленно.

Изменение гранулометрического состава цементного порошка в зависимости от типа помольного агрегата

Низкая избирательность измельчения, которая в целом характерна для шаровых мельниц, не зависимо от способа побуждения мелющих тел (мельницы барабанные, вибрационные, планетарные, эллиптические — центробежные), усугубляется отсутствием возможности регулирования гранулометрического состава получаемого продукта в плане уменьшения размеров частиц средней, наиболее важной фракции цементного порошка. Так как, истирающий помол — это, прежде всего крайне разнообразный зерновой состав, процентное отношение основных фракций в готовом продукте не зависит от дисперсности исходного материала. При попытках уменьшить размер частиц средней фракции скажем с 40 до 20 мкм (не увеличить показатели удельной поверхности, а именно уменьшить средний размер частиц), в результате неизбирательного раздавливающе — истирающего помола, попутно измельчается весь размерный ряд цементных зерен. Верхняя часть средней фракции переходит в тонкий переизмельченный класс цементных частиц, а измельчаемые крупные зерна не успевают компенсировать потерю средней фракции. В результате на фоне увеличения удельной поверхности цементного порошка фиксируется сокращение доли частиц наиболее важных размеров 10- 20 мкм. И чем интенсивней истирающее воздействие, тем больше показатели удельной поверхности цементного порошка, а вместе с этим и больше тонких частиц, и тем меньше частиц средней фракции требуемого размера. Получается замкнутый круг, если интенсивность истирающего воздействия недостаточна, в цементном порошке не удается уменьшить процент частиц крупных, если напротив избыточна, происходит пополнение массы тонких частиц в основном за счет измельчения частиц средних.

Учитывая, что для равномерного твердения цементного камня помимо мелкой фракции (5-10 мкм), оказывающей определяющее влияние на рост прочности в начальные сроки твердения, также необходима и фракция средняя (10- 20 мкм), которая определяет прочность цемента в первые недели и месяцы набора прочности. Отсутствие возможности повлиять на гранулометрический состав цементного порошка при помоле на шаровой мельнице, практически не оставляет надежды на получение материала, повышение активности которого в начальные сроки твердения не оборачивалось бы снижением прочности и морозостойкости в последующем.

Неоднородность зернового состава порошка, полученного в результате измельчения методом истирания, также подтверждает и устоявшаяся практика определения удельной поверхности цементного порошка по остатку на сите № 008. Так, остаток 5-8% (по массе), характерен для цемента, измельчаемого на шаровой мельнице, удельная поверхность которого 2500-3000 см2/г. Даже быстротвердеющий высокомарочный цемент с удельной поверхностью 4500 см2/г обычно имеет 2-5% частиц размерами более 80 мкм.

Метод ударного измельчения цементного зерна, напротив характеризуется достаточно узкой гранулометрией, процентное содержание в порошке частиц средней фракции при измельчении материала методом свободного удара гораздо выше, нежели при других способах помола. Поэтому, основной прирост прочности цемента, активированного ударным методом, наблюдается не в первые часы твердения, а спустя 3-7 суток. Что объясняется, прежде всего, высокой избирательностью измельчения методом свободного удара.

При ударном, или как его еще называют дезинтеграторном измельчении цементного зерна, гранулометрия получаемого продукта в основном зависит непосредственно от скорости свободного удара. Так, для разрушения цементного зерна, в зависимости от его размера, необходима строго определенная энергетика ударного воздействия. Чем выше скорость помольного органа (для дезинтегратора, центробежно-ударной мельницы) или скорость самой разрушаемой частицы (для струйной мельницы), тем меньше размер частиц в готовом продукте. Учитывая высокую гранулометрическую однородность материала, полученного в результате ударного измельчения, можно сделать вывод о самом характере такого измельчения.

Если при истирающем помоле разрушающее воздействие помольных органов отражается на всем ассортименте размеров частиц, то при ударном измельчении разрушаются лишь те частицы, размер которых соответствовал интенсивности ударного воздействия. Или другими словами, при недостаточно мощном ударе, измельчаются только относительно крупные, малоактивные цементные зерна, не домолотые заводскими шаровыми мельницами. Если скорость удара будет увеличена, начнется разрушение «хвостов» средней фракции, если скорость удара еще повыситься начнется уменьшение размеров средней, а затем и верхней части «средней» фракции и так далее.

Многочисленные опыты показали, что у портландцемента, имеющего остаток на сите № 008 — 20%, в результате дезинтеграторного измельчения и как следствие выравнивания зернового состава средней части, частицы размерами более 80 мкм переходят в среднюю фракцию с размерами частиц менее 40 мкм. Иными словами, крупные неактивные цементные зерна в результате ударного измельчения, переходят в активную среднюю фракцию, оказывающую основное влияние на прочность цементного камня в первые дни, недели и месяцы его твердения.

Именно высокая избирательность дезинтеграторного измельчения обеспечивает возможность получения активированного портландцемента средних показателей удельной поверхности, но с полным отсутствием остатка на сите № 008, и чрезвычайно малым остатком на сите № 006.

Соотношение основных фракций цементного зерна после помола наглядно демонстрируют прилагаемые гистограммы, позволяющие определить процентное содержания частиц различных размеров в цементных порошках сопоставимой удельной поверхности, но полученных на разных помольных агрегатах.

Гистограмма 1 — Количество частиц данного размера порошка, дезинтеграторного измельчения (V max = 160 м/c )

Гистограмма 2 — Количество частиц данного размера порошка, измельченного на шаровой вибрационной мельнице

Как видно из представленных гистограмм, главное отличие порошков, полученных на разных помольных агрегатах, это процентное отношение основных фракций. Материал, помол которого производился на шаровой мельнице, характеризуется относительно большим количеством тонких частиц размерами менее 5мкм, и высоким содержанием крупных зерен размерами более 40 мкм.

При этом главной проблемой повышения содержания тонкой фракции в следствии переизмельчения цементного зерна, является даже не снижение производительности помольного оборудования и не повышение расхода энергии, затрачиваемой для бесцельного сверхтонкого помола. Тонкие частицы, размером менее 5 мкм, большое количество которых образуется при раздавливающе- истирающем измельчении, способны снизить прочность цементного камня. Именно из-за переизмельчения цементного зерна в ряде случаев активность портландцемента, в результате дополнительного помола, не только не увеличивается, а наоборот снижается.

Причины и последствия переизмельчения цементного зерна

Хорошо известно, что чрезмерное измельчение цементного зерна не всегда целесообразно, а при определенных условиях совершенно не допустимо, так как частички 1-3 и даже 5 мкм быстро гидратируются влагой воздуха уже при кратковременном хранении цементов на складах, что значительно снижает активность материала. В случае если активация портландцемента проводиться на местах его использования, что исключает его длительное хранение, переизмельчения цементного зерна также необходимо избегать, так как высокодисперсные частицы размерами менее 5 мкм при затворении цемента водой гидратируют настолько быстро, что практически не участвуют в последующем его твердении. В результате высокодисперсные частицы, на получение которых была затрачена львиная доля подведенной энергии, в твердеющем цементном камне играют роль мелкого заполнителя, так как их гидратация закончилась задолго до начала гидратации частиц более крупных. Именно поэтому, для того чтобы обеспечить равномерное и быстрое твердение цемента, содержание частиц размерами менее 5 мкм не должно превышать 20 %. В противном случае эстафета равномерного твердения при строго последовательной гидратации цементных зерен необходимых размеров, будет нарушена, что негативно скажется на прочности цементного камня, либо бетонного изделия.

Еще раз, возвращаясь к вопросу оптимального гранулометрического состава цементного порошка, хотелось бы отметить, что большинство разочарований практическими возможностями активации портландцемента, происходит тогда, когда основным способом увеличения его активности избирается метод повышения дисперсности. В случае если помольным агрегатом выступает вибрационная мельница, результаты такой активации очень легко прогнозируются. При интенсивном помоле цементного порошка с использованием мельницы раздавливающе-истирающего действия, его гранулометрический состав изменяется. Средняя фракция, представленная частицами 10-40 мкм, которая и определяет прочность цементного камня в первые недели и месяцы, в результате переизмельчения переходит в разряд частиц размером менее 5 мкм. При затворении полученного «активированного» цемента водой, сначала фиксируется небывалый рост прочности, которая обеспечивается за счет быстрой гидратации тонких частиц. Именно этот эффект часто принимается, а потом и выдается за активацию цемента. Вслед за лавинообразным набором прочности цементного камня наступает период стабилизации, а затем и снижение прочностных показателей. Перевод средней фракции цементного зерна в мелкую фракцию, попросту лишает начавшийся рост прочности цементного камня логического продолжения. За тонкими частицами практически сразу же начинаются более крупные цементные зерна, что не позволяет добиться равномерного набора прочности на протяжении всего срока твердения. Таким образом, средняя, наиболее полноценная фракция часто бывает принесена в жертву эффекта «псевдоактивации» портландцемента.

Итак, цементный порошок, получаемый в шаровых мельницах любого способа побуждения мелющих тел, характеризуется широким зерновым составом, при этом процентное содержание основных фракций цементного зерна не поддается оперативной регулировке. В то же время, при активации портландцемента совершенно необходимо получение материала узкой гранулометрии именно средней фракции (10-40 мкм), которая должна пополняться в результате измельчения крупных, малоактивных цементных зерен. В этой связи, только при использовании агрегатов измельчения ударного действия, таких как дезинтеграторы, центробежно-ударные мельницы и т.д., становиться возможным повышение активности цемента наиболее рациональным способом.

Липилин А.Б.
Коренюгина Н.В.
Векслер М.В.

Список литературы:

  1. А.В. Волженский «Минеральные вяжущие вещества»,1986 г.
  2. И.А. Хинт «Основы производства силикальцитных изделий», 1962 г.
  3. С.С. Добронравов «Строительные машины и оборудование», 1991 г.

Марки цемента — маркировка по старому и новому госстандарту (ГОСТу)

Уже более пятнадцати лет действует стандарт, который более полно описывает состав и характеристики цемента. Согласно новому стандарту марки цемента обозначаются римскими цифрами, а также указывается количество и тип добавок, класс по прочности на сжатие и скорость твердения. В общем, в новой маркировке содержится полная информация для осознанного выбора вяжущего.

Марки цемента по ГОСТу 31108

Новый стандарт был разработан в 2003 году для согласования действующей маркировки с той, которая принята в странах ЕС. На данный момент работоспособна последняя версия от 2016 года. Как обычно, действие предыдущего стандарта не отменено — оба работают параллельно.

Маркировка тоже может быть смешанной

Название и вещественный состав

По-новому марки цемента определяются их вещественным составом. В маркировке присутствуют три буквы кириллицы — ЦЕМ и латинские цифры за ними. Латинскими цифрами и зашифрован состав:

  • Аббревиатура ЦЕМ I обозначает портландцемент. В нем добавок быть не может. Состоит только из молотого обожженного клинкера и технологических присадок в количестве не более 5% от массы.
  • ЦЕМ II — портландцемент с минеральными добавками. Массовая доля добавок — от 6% до 35%. По количеству добавок делится на две группы:
    • группа А с содержанием от 6% до 20%;
    • группа B говорит о том, что добавок введено от 21% до 35%.

      Импортный цемент маркирован по тому же принципу, только буквы CEM стоят впереди — от английского «cement»

  • Если видите ЦЕМ III — это шлакопортландцемент. Эта марка содержит от 36% до 65% размолотого в пыль шлака. По количеству добавок есть три подтипа:
    • А — от 6% до 20%;
    • В — от 21% до 35%;
    • С — от 36% до 65%.
  • Пуццолановый цемент обозначают ЦЕМ IV. Это добавка вулканического происхождения. Производится обычно в тех местах, где данный минерал добывают.
  • Маркировка композиционного цемента ЦЕМ V. Эта марка цемента может содержать несколько типов добавок: шлак, золу и известняк.

Цемент от ЦЕМ II до ЦЕМ V могут иметь подтипы в зависимости от добавок. Они обозначаются латинскими буквами A, B и C. После обозначения группы ставят косую черту, а за ней букву, обозначающую тип добавки, затем через тире букву, которой кодируют саму добавку. Например, ЦЕМ Н/А-И. Если добавок несколько, их обозначение указывается через тире, а вся группа берется в скобки: например: ЦЕМ IV/A (П-З-Мк).

Добавки в составе

Добавки и обозначение марок бетона с ними есть в таблице. Как видим, ЦЕМ I делают только из измельченного клинкера с небольшим количеством (не более 5%) технологических веществ. Больше всего модификаций и разновидностей у второй группы портландцемента.

Марки портландцемента в зависимости от добавок в составе

Шлакопортландцемент и более низкие марки цемента тоже имеют добавки, но вариаций значительно меньше. Все добавки и присадки в маркировке отображаются заглавными буквами:

  • Ш — гранулированные шлаки;
  • Мк — микрокремнезем;
  • П — пуццолана;
  • Г — глиеж;
  • З — зола;
  • С — обожженный сланец;
  • И — известняк.

Марки цемента в зависимости от состава добавок

Чистый портландцемент — ЦЕМ I, всегда идет без дополнительных компонентов, так как он, по определению, иметь их не может. Рассмотрим несколько примеров маркировки других марок цемента. Если видим ЦЕМ II/В-Ш. Это значит, что перед нами портландцемент второго типа, то есть, с добавками. Об этом говорят буквы, которые стоят после косой черты. Буква «B» говорит, что количество добавок более 21%, а буква «Ш» — использован шлак. Надпись ЦЕМ III/C обозначает шлакопортландцемент с добавкой обожженного сланца. В общем, наверное, понятен способ расшифровки маркировки.

Класс по прочности на сжатие

В новом стандарте за составом должна указываться прочность на сжатие, которую в состоянии дать эта марка цемента. По ГОСТу существуют только три значения:

  • 22,5 Н;
  • 32,5 Н;
  • 42,5 Н;
  • 52,5 Н.

Обозначение и скорость набора прочности по стандарту для цемента разных марок

Прочность проверяется на 2, 7 и 28 сутки. Практически все цементы проверяют через 7 дней после затворения, а ЦЕМ III (шлакопортландцемент) проверяют через 2 суток. По скорости твердения марка цемента может быть:

  • нормальнотвердеющей — обозначается буквой Н после класса прочности на сжатие;
  • медленнотвердеющей — М;
  • быстротвердеющей — Б.

График набора прочности цемента по новому стандарту в мПа

Вся эта информация отображается в маркировке. Например: ЦЕМ III/В-Ш 32,5М. Обозначает шлакопортландцемент с добавками типа В — гранулированным шлаком, прочностью на сжатие 32,5 М, медленнотвердеющий.

Что означает марка цемента по старому ГОСТу

В старом стандарте больше видов цемента. Все они приведены в таблице. Самые ходовые две марки — ШПЦ и ПЦ. Соответственно шлаковый портландцемент и обычный. Маркировка проста — после аббревиатуры стоит трехзначное число. Это марка, которая обозначает прочность на сжатие в килограммах на сантиметр квадратный (кг/см²). Например, ПЦ 400, ШПЦ 300, ПЦ 500. Намного реже встречаются и используются ПЦ 550, 600 и 700. Их применяют для особых условий строительства.

Пример маркировки цемента по старому стандарту

В маркировке портландцемента за маркой стоит буква «Д», которая расшифровывается как «добавки» и дальше цифра от 0 до 20. Цифра указывает процент добавок, соответственно Д0 — это нет добавок, Д20 — 20%. В качестве добавки обычно применяют гранулированный доменный шлак. Например, ПЦ 400 Д15. Говорит о том, что в цементе 15% шлаковых добавок.

Обозначение состава цемента по старому ГОСТу

В ШПЦ шлака по определению больше. По ГОСТу в нем содержится от 21% до 85% этого вещества и поэтому ШПЦ больше 300 кг/см² выдержать не может. Это самая дешевая марка цемента из существующих, которую применяют для изготовления низкомарочного бетона — М100, 150 или 200. И то, если посмотреть на рекомендации, для приготовления раствора марки М200 рекомендован цемент М400, а допустимые марки — М300 и М500. Тем не менее, шлакопортландцемент используют в быту — для стяжки, если не требуется высокая ее прочность, для заливки бетонной подготовки при устройстве пола по грунту.

В частном хозяйстве наиболее ходовая марка цемента — ПЦ 400. Она оптимальна по прочности. Из этого цемента можно сделать раствор от М200 до М350. Именно эти марки находят наиболее широкое применение. Более высокие применяют для многоэтажного и специального строительства.

Соответствие старой и новой маркировки цемента

Точного соответствия быть не может, так как новый стандарт дает более полную расшифровку состава. Сопоставить можно только по прочности и общему числу добавок.

Если сравнивать по количеству добавок, то видим следующую картину.

  • Те марки ПЦ, которые имеют нулевое количество добавок (Д0) или их не более 5%, соответствуют новой марке цемента — ЦЕМ I. То есть, ПЦ400 Д0 до Д5 и ПЦ500 Д0-Д5 обе будут маркироваться ЦЕМ I. Вот только дальше будет стоять различная цифра, которая обозначает класс прочности на сжатие.
  • Весь портландцемент, произведенный по старому нормативу с количеством добавок больше 5% будет относиться ко второму типу по новой маркировке. То есть, ПЦ 400 Д10 или ПЦ 500 Д20 равнозначно ЦЕМ II. Так как по старому ГОСТу количество добавок не более 20%, то все марки будут относиться к подтипу А.
  • Шлакопортланд цемент ШПЦ по-новому обозначается как ЦЕМ III.

Новая маркировка цемента: расшифровка и возможные значения

С соответствием типов бетона по старой и новой маркировке разобрались. Во всяком случае, с наиболее популярными марками. А соответствия старых марок и новых по прочности такие:

  • М300 соответствует 22,5 Н;
  • М400 — 32,5 Н;
  • М500 — 42,5 Н;
  • М600 — 52,5 Н.

Теперь все понятно даже с новыми обозначениями

Теперь можно привести точное соответствие старых и новых марок цемента на примерах:

  • ПЦ400 Д5 — ЦЕМ I 32,5
  • ПЦ400 Д15 — ЦЕМ II/А-Ш 32.5
  • ПЦ500 Д0 — ЦЕМ I 42,5
  • ПЦ500 Д20 — ЦЕМ I/А-Ш 42.5
  • ШПЦ 300 — ЦЕМ III 22,5

Не так и сложно. В новых марках указан более точный состав и количество добавок, которые влияют на характеристики. Может быть также указана скорость твердения. В общем, если знать расшифровку, удобнее подбирать нужную марку.

Использование портландцемента в современном строительстве.

Свое начало портланцемент берет в начале 19 века и сегодня он используется как основа для бетона. Жедают портландцемент из из клинкера перемалывая его в порошок с сульфатом кальция. На протяжении многих лет этот материал показывал как практически незаменимый во многих видах строительства. Предлагаем рассмотреть какие задачи решает портландцемент.

Использование:

  1. Наиболее важным применением портландцемента является производство бетона. Он играет ключевую роль в установлении и затвердевания бетона.
  2. При смешивании с другими составами, портландцемент начинает служить двум целям. Один из них, предусматривает создание бетона, чтобы быть прочным в сухом состоянии. А второй – превращение жидкого состояния в прочный камень.
  3. Он широко используется для подпорных стен и сборных железобетонных блоков в стенах и в качестве основного компонента для создания прочного фундамента из бетона.
  4. При смешивании с водой, портландцемент буквально превращается в пластичный камень и, таким образом он может быть использован для целей и в местах, где Вы захотите, даже в труднодоступных.
  5. Он может быть сформирован для получения жестких и огнеупорных материалов, которые могут, далее, использованы при проектировании зданий, цехов, резервуаров и других сооружений.
  6. Любая структура железа или дерева подвергается коррозии либо по воздуху или по воде. Но в бетонной оболочке, сделанной с использованием цемента, они могут быть эффективно защищены.
  7. Любая структура, которая предназначена для поддержки огромного количества веса и сделанная с применением цемента свою задачу выполнит. Этими структурами могут быть: от первых этажей многоэтажных зданий и до пролетов мостов и плотины.
  8. Благодаря своей способности для предотвращения коррозии, он используется на судах, танков и бункеров.
  9. Пожар может оставить любое здание или сооружение полностью сожженным, но с использованием портландцемента, это может быть предотвращено.
  10. Он также отлично используется в строительных растворах, штукатурках, стяжках для полов, как материал, который может быть, втиснут в пробелы химических формул, чтобы консолидировать структуры, и скрепит их воедино.

Использование цемента имеет колоссальное значение для бетонного производства об этом можно узнать на abisgroup.ru. Благодаря известности, которая уже многое время привязана к нему, этот цемент, как говорят, уже сделали и оставили свой след.

Существует несколько видов цемента: романцемент, портландцемент, магнезиальный, глиноземистый, кислородный и смешанный. Наиболее часто применение портландцемента в строительстве и ремонте. В зависимости от прочности цемент делится на марки: М 100 — М 600. Цифра обозначает прочность материала при сжатии в кг/см². На физические свойства также оказывают различные добавки, которые улучшают технические свойства цемента такие как пластичность, морозостойкость и водонепроницаемость. Но на практике при индивидуальном строительстве или ремонте мало кто забивает себе голову такими подробностями, поэтому рассмотрим самые популярные марки цемента с точки зрения его прочности.

  • Цемент М 300.
  • Цемент М 400.
  • Цемент М 500.

ПОРТЛАНДЦЕМЕНТ МАРКИ М 300

Цемент марки М 300 благодаря своей хорошей морозостойкости, водонепроницаемости, а также невысокой стоимости нашел широкое применение в сооружении различных типов фундаментов: ленточных, монолитных и свайных. Кроме того, из бетона с применением цемента марки М 300 делают дорожки, лестницы и заборы. Как видим цемент этой марки применяется там, где нет особой нагрузки на бетон.

ПОРТЛАНДЦЕМЕНТ МАРКИ М 400

Фасовка цемента М400 в мешках по 5 кг

Марка цемента М 400 наиболее распространена в строительстве. Применение специальных добавок при его производстве повышают его водостойкость, морозостойкость,прочность и долговечность. Исходя из соотношения цены — качества, его стоимость можно считать оптимальной. Однако цена у различных производителей может различаться в зависимости от количества и качества добавок. Портландцемент марки М 400 широко применяется для изготовления железобетонных изделий и конструкций.

ПОРТЛАНДЦЕМЕНТ МАРКИ М 500

Раствор с применением цемента марки М 500 быстро застывает, что используется при проведении различных аварийных работ, так как уже с момента застывания проявляются его основные свойства. Используют его также там где к таким показателям, как морозостойкость, влагостойкость и прочность предъявляются особые требования, то есть для изготовления особо ответственных железобетонных конструкций. Его используют для изготовления сборного ж/бетона, балок и перекрытий. Есть два вида цемента марки М 500:

а) портландцемент марки М 500 ДО, не имеющий примесей и добавок; применяется в промышленном строительстве где необходимо обеспечить повышенную морозостойкость, влагостойкость и прочность изделий;
б) цемент марки М 500 Д 20 содержит 20% добавок, которые улучшают его антикоррозионные свойства.

ПОЛЕЗНО БУДЕТ ЗНАТЬ

  • Чтобы определить сколько потребуется цемента на 1 м3 раствора нужно иметь в виду, что 1 литр цемента равен 1,4 кг. Возьмем для примера соотношение цемента и песка 1 :3 куда входит 1 м3 песка и 0, 333 м3 цемента. Умножаем 0,333 л ∙ 1,4 кг/л получаем ≈ 466 кг. Так, как обычно цемент продают в мешках по 50 кг, нам понадобится 466 : 50 ≈ 9 мешков. Также можно определить количество мешков, необходимых при соотношении цемента и песка 1 : 4.

Бетономешалка КАМАЗ

  • Сколько кубов раствора бетона в миксере? Все зависит от марки бетоносмесителя. В Российский автомобильных смесителях 5 кубов, в Китайских — 4 куба.
  • Сколько весит ведро цемента? Учитывая что 1 литр цемента равен 1,4 кг ведро цемента в 10 литров будет весить 14 кг.
  • Время затвердевания раствора с применением цемента марки М 400 Д 20 составляет 15 часов.
  • Начало схватывания цемента марки М 500 Д0 от 40 до 50 минут.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *